
Cramer Decision Tree (DT) Threshold of Toxicologic Concern (TTC)

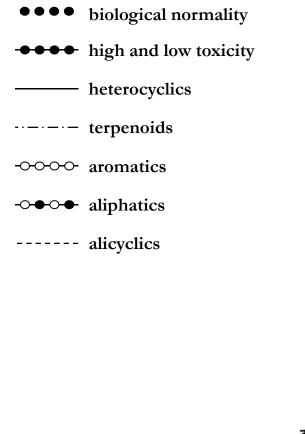
Timothy Adams, Ph.D. FEMA/IOFI

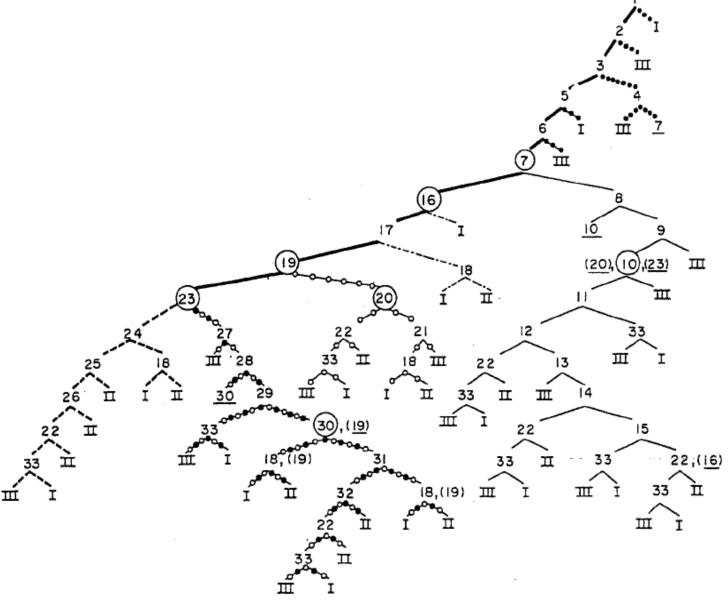
Table of Contents

- Introduction to Decision Tree (DT)
- Impact on Flavor Regulation
- Framework for Expanded DT
- Preliminary Results
- Effect of Expanded DT on TTC Values

The Cramer/Ford/Hall Decision Tree

- Published in 1978
 - Food Cosmet. Toxicol. (1978) 16, 255-276
- Relates chemical structure to toxic potential
- Screening for toxicity testing
- Validated using toxicity and metabolism data for pesticides, drugs, food additives, industrial chemicals, flavors, fragrances
 - Updated in 1996 (*Munro, et al., 1996*)


Decision Tree – Structural Classes


- Class I
 - Structures that suggest a low order of oral toxicity. If low human exposure, then a low priority for further testing (e.g., ethyl butyrate)
- Class II
 - Less clearly innocuous than Class I, but no firm indication of toxicity or the lack thereof (e.g., furfural)

Class III

 Structure permit no initial presumptions of safety, or may suggest toxicity. - highest priority (e.g., anethole)

The Decision Tree Structure

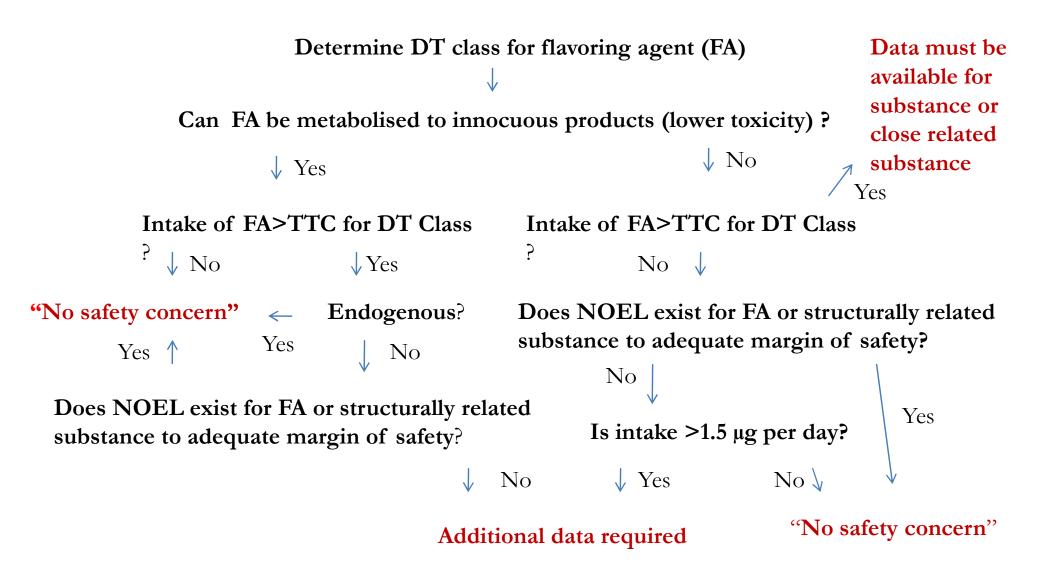
Threshold of Toxicologic Concern (TTC)

• Munro *et al.* 1996

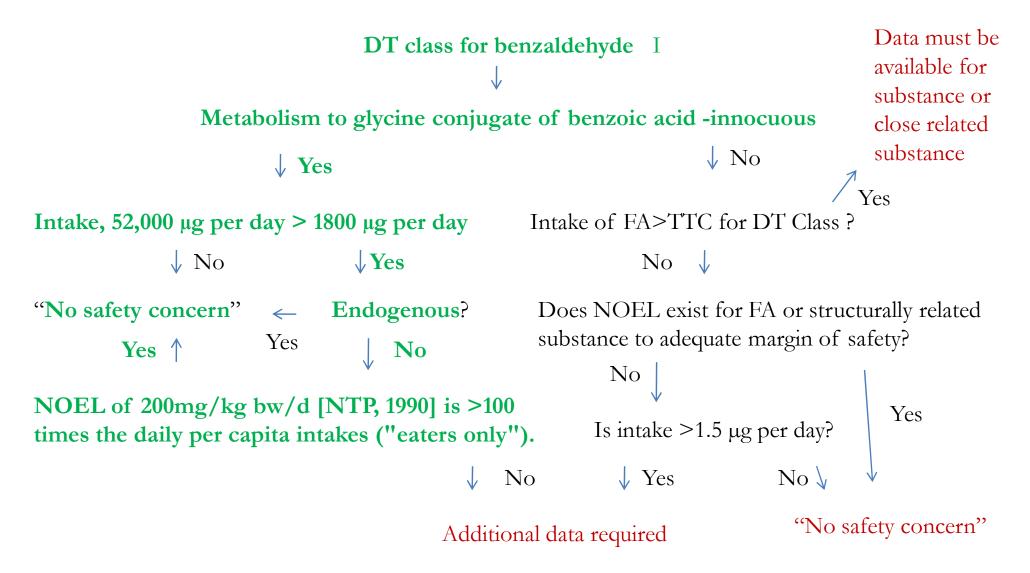
- Collect toxicity data for each DT Class: I, II, and III

- Organize NOELs by Structural Class
- Identify 5th % NOEL for each Class (Class I, 3.0 mg/kg/d
- Assume 100-fold safety factor
- Define TTC for each DT Class:

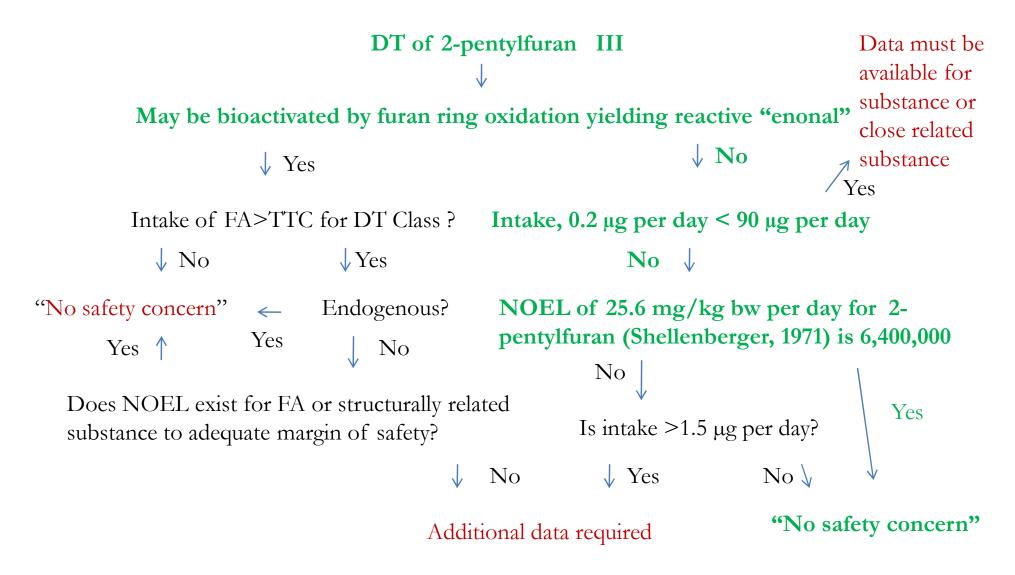
- 5% NOEL(µg/kg/d) x 60 (kg/p) x 1/100=TTC (µg/p/d)


Relation of DT Class to TTC (Munro, 1996)

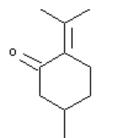
Structural Class (examples)	5th% NOEL, mg/kg/d	TTC (ug/p/d
I (ethyl butyrate, cinnamaldehyde)	3.0	1800
II (3,6-dimethylpyrazine, pulegone)	0.91	544
III (estragole, anethole)	0.15	90

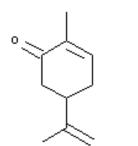

Application of DT and TTC in Safety Evaluation (1996-present)

- International
 - Codex/JECFA 1995 evaluation procedure
 - Use DT and TTC
- Regional
 - European Food Safety Authority 2000 (EFSA)
 - Adopt JECFA procedure
 - FDA, FEMA GRAS
 - Use as screening method-1978


Use of TTC and DT in JECFA Procedure, 1996

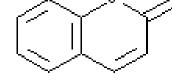
How the JECFA Procedure Works

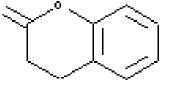

How the JECFA Procedure Works



Expansion of the DT

- 1978-present –volume of toxicology and metabolism data 个
 - increased data \rightarrow more branches of DT
 - revise steps in the current DT
 - Step 18h (four or more carbons bonded to a ketone, DT II
 - Step 18h (only 2-hexanone with methyl substitution at C-3 or C-4 DT III or DT IV
 - eliminate steps no longer valid
 - Is the substances endogenous?
 - Terpene branch unnecessary


DT-Reconciling New Knowledge



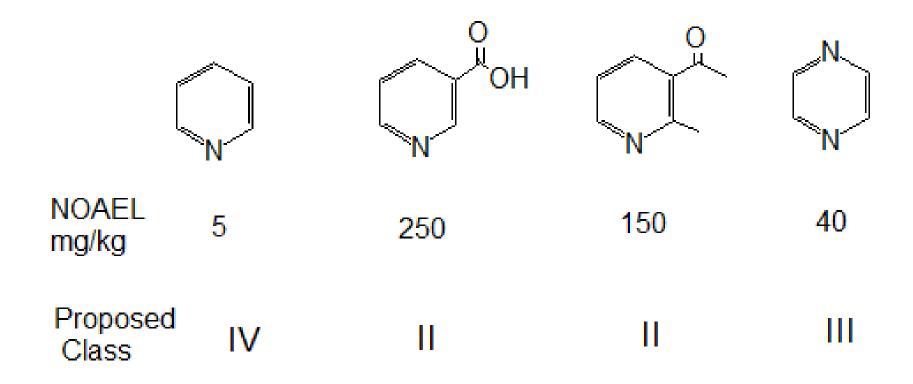
Pulegone DT Class II "enonal" intoxication NOAEL 10 mg/kg/d

Carvone DT Class II ω-oxid. & reduction detoxication NOAEL 750 mg/kg/d

0

Coumarin DT Class III No hydrolysis epoxidation-rat intoxication NOAEL <50 mg/kg/d

Dihydrocoumarin DT Class III hydrolysis to 2-phenylpropionic acid detoxication NOAEL 150 mg/kg/d


Citral DT Class I ω- & ald. oxid. To yield diacid Detoxication NOAEL 200 mg/kg/d

o

2-Hexenal DT Class I ald. oxid. & glutathione conjugation Detoxication NOAEL 80 mg/kg/d

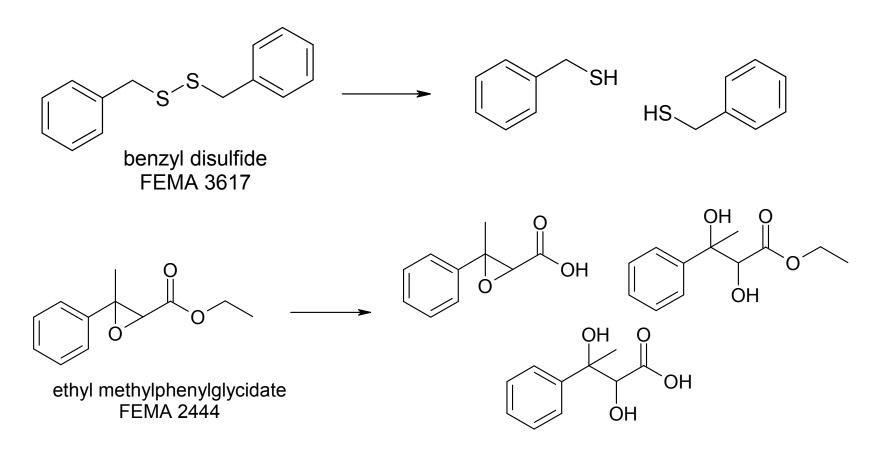
	HO O furaneol	HO HO O Maltol	hinokitiol
DT Class			
Genotoxicity (ex)	+ AMS, + in vivo MN (ip)	+AMS +/- In vivo MN(ip)	+AMS, +in vivo MN (ip)
Metabolism	Glu acid conj. (h)	Glu acid conj. (h)	Fe+++ complex/stored
Biochemistry	Fe+++ complex/SOD/OH.	Fe+++ complex/SOD/OH.	Fe+++ complex/SOD/OH.
Kow	<1.5	<1.5	3.0
2-yr Bioassay	Not Carcinogenic	Not Carcinogenic	Not Carcinogenic Splenic effects
NOAEL	150 mg/kg/d	200 mg/kg/d	<50 mg/kg/d
Proposed DT Class	П	П	Ш

Heteroaromatics

Expanded/Revised DT Revisions

- Revise "trunk"- steps lacking biochemical basis eliminated
 - Biological normality Step 1
 - Common component of food Step 22
- Increase elements (Step 3) C, H, O, N, divalent S, higher oxid. S, Cl, F, and P in a biologically stable oxidation state

Expanded/Revised DT


- Evaluate absorption first
 - Effect of functional group, size, etc.
 - Effect on other nutrient absorption (Fe, Ca)
- "Main branches" of DT
 - Branched-chain aliphatics and alicyclics treated in same branch
 - Aromatic and heteroaromatic-treated separately

Multiple Factors Used in Expanded DT

- Complex Integration Process
 - Functional group
 - Skeletal structure
 - Functional moiety (exocyclic isopropylidene vicinal to ketone)
 - Presence or absence of other functional groups
 - Extent of conjugation
 - Impact of electron donating groups
 - Positional & geometric isomers

Reactivity Prior to Metabolism

Step 1 Does the substance contain functional groups that are predicted or known to react (e.g., hydrolyze, reduce or oxidize) under conditions present in the gastric & intestinal compartments or in circulation prior to first-pass metabolism?

Anticipated TTC Changes

Expanded DT

Old DT Class Class 5th% TTC, % ug/p/d flavoring NOEL, mg/kg/ substanc d es in class 3.0 1800 80% 8% Ш 0.91 544 0.15 Ш 12% 90

Class	Approx. 5% NOEL mg/kg/ d	TTC, ug/p/d	NOEL Range mmol/kg/d MW=200
I	50	30000	>2.5
II	10	6000	0.8-2.5
III	1.5	900	0.25-0.75
IV	0.5	300	0.05-0.25
V	0.1	60	<0.05

Structural Class Changes ?

trans-Anethole III-II Ethyl methylphenylglycidate III→I Dihydrocoumarin III→I 4-Methyl-5-thiazoleethanol III→III Isoeugenyl methyl ether III \rightarrow I Ethyl 3-phenylglycidate III→I p-Propylanisole III→II 6-Methylcoumarin III→II Methyl beta-naphthyl ketone ? Methyl N-methylanthranilate III \rightarrow I 4-Methylbiphenyl III→II 4,5,6,7-Tetrahydro-3,6-dimethylbenzofuran III 2-Ethyl-4,5-dimethyloxazole III→II? Benzoin III→II Bis(2-methyl-3 -furyl)tetrasulfide? 3-((2-Methyl-3-furyl)thio)-4-heptanone? Estragole III Tetrahydrofurfuryl alcohol III \rightarrow II Tetrahydrofurfuryl acetate III→II Quinoline V

Thank You

Questions are welcome